
Please do not redistribute slides without prior
permission.

1

Getting Started with
Scripting in Python

16:00 - 16:50 Fri, October 27, 2023

50 minutes | Introductory Audience 2

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io
YouTube:
www.youtube.com/c/MikeShah

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

Abstract

Blender 3D is a powerful tool for 3D modeling, animation,
rigging, texturing, drawing, vfx, and more -- but what
happens when a feature is not available in your
respective domain? Good news -- you can create it
yourself! In this talk, I will be showing beginners how they
can get started creating their first add-on to the Blender
3D ecosystem using Python. This talk will show you how
to get started with the scripting interface for artists with
minimal programming experience, or programmers who
want to write tools that integrate into the Blender 3D
ecosystem. Folks will leave this presentation
understanding how to write, package, and find more
information to develop awesome scripts where they
need!

The abstract that you read and enticed
you to join me is here!

3

4

Warning -- this talk may take you on a journey of spending even more time

using Blender 3D to create awesome creations.

Rated ‘E’ For Everyone!

(Yup, let’s continue to make Blender3D fun
for everyone involved)E

Here is what we are creating!
(So you know if you should stick around or hop into another session)

5

Result of Today’s Presentation

6

● Creating a Bounding Box programmatically in Python

Code for the talk (or Google my name and find talk listed on website)

● Located here:
https://github.com/MikeShah/Talks/tree/main/2023/2023_BlenderCon

7

https://github.com/MikeShah/Talks/tree/main/2023/2023_BlenderCon

Your Tour Guide for Today
by Mike Shah

● Associate Teaching Professor at Northeastern University
in Boston, Massachusetts.

○ I love teaching: courses in computer systems, computer graphics,
geometry, and game engine development.

○ My research is divided into computer graphics (geometry) and
software engineering (software analysis and visualization tools).

● I do consulting and technical training on modern C++,
DLang, Concurrency, OpenGL, and Vulkan projects

○ Usually graphics or games related -- e.g. Building 3D application
plugins

● Outside of work: guitar, running/weights, traveling and
cooking are fun to talk about

8

Web
www.mshah.io
YouTube
https://www.youtube.com/c/MikeShah
Non-Academic Courses
courses.mshah.io

http://www.mshah.io
https://www.youtube.com/c/MikeShah
http://courses.mshah.io

Programming Blender 3D

9

Origin of this Talk

10

● The idea of this talk was born out of a
computational geometry course that I
teach

○ Within that course we implement several
geometry algorithms in C++ and the SDL2
library in two-dimensions

● In order to start implementing in 3D
however, I could not assume students
knew OpenGL/Vulkan/Metal/D3D

○ So what better tool than Blender 3D which
had many mesh operations and an easy
scripting interface to access them.

○ Teaching students a concrete skill (i.e.
Blender 3D) is also a win for me!

Brainstorming (1/2)

11

● So I thought of several ideas of
how to get students started:

○ Computing Normals
○ Bisection
○ Convex Hull
○ Bounding Boxes

● I settled on bounding boxes, as it
touches on enough interesting
ideas for programming in Blender
3D

○ The rest remained candidates for
incorporating into a final project!

○ (And homework for you now!)

Brainstorming (2/2)

12

● So I thought of several ideas of
how to get students started:

○ Computing Normals
○ Bisection
○ Convex Hull
○ Bounding Boxes

● I settled on bounding boxes, as it
touches on enough interesting
ideas for programming in
Blender3D

○ The rest remained candidates for
incorporating into a final project!

○ (And homework for you now!)

So let’s get started!

Writing Python Scripts in Blender 3D

13

Install Blender 3D

14

● I’ll assume you have installed Blender 3D
○ I’ll write scripts using Blender 3.6.5, but these

scripts should largely be compatible with most
every version of Blender 3.x.x

■ Nothing too fancy going on today
● The last assumption I’ll make is that you

have used Blender 3D at least a little bit
○ Minimum Requirements: You can navigate with

the mouse, extrude some faces on a cube, and
have spent a few hours in the program

○ But that’s about it! That’s great news if you’re a
programmer building plugins to support a
project, and great news if you’re already an
expert artist!

https://www.blender.org/download/

https://www.blender.org/download/

Scripting Layout (1/5)

15

● We are primarily going to be
working from the Scripting
Workspace

○ Here’s what the scripting layout
looks like

Scripting Layout (2/5)

16

● Script Workspace
○ For scripting!

● Python Console
○ Useful for typing in

commands, querying
information, and getting fast
feedback

● Info Log
○ Tells you the results of

operations occurring in the
viewport (e.g. moving around)

● Text Editor
○ Used for executing larger

scripts

Scripting Layout (3/5)

17

● Script Workspace
○ For scripting!

● Python Console
○ Useful for typing in

commands, querying
information, and getting fast
feedback

● Info Log
○ Tells you the results of

operations occurring in the
viewport (e.g. moving around)

● Text Editor
○ Used for executing larger

scripts

Scripting Layout (4/5)

18

● Script Workspace
○ For scripting!

● Python Console
○ Useful for typing in

commands, querying
information, and getting fast
feedback

● Info Log
○ Tells you the results of

operations occurring in the
viewport (e.g. moving around)

● Text Editor
○ Used for executing larger

scripts

Scripting Layout (5/5)

19

● Script Workspace
○ For scripting!

● Python Console
○ Useful for typing in

commands, querying
information, and getting fast
feedback

● Info Log
○ Tells you the results of

operations occurring in the
viewport (e.g. moving around)

● Text Editor
○ Used for executing larger

scripts

(Aside) If you cannot find the Scripting Workspace

20

● Scripting Workspace is usually the last tab.
○ Just scroll over the menu bar and scroll your mouse

wheel
○ Or otherwise use ‘page down’

● If you’re on a Mac laptop with a small screen,
you can navigate to the next workspace

○ Mac users without a page down button:
■ Cmd + fn + down

● Another option is to scale down your display a
bit

○ Edit -> Preferences -> Adjust Resolution Scale

Your First (But not last!)
Blender 3D Python Script

21

Your First Script (1/2)

● From the Python Console
you can type in your first
command:

○ print(“some_string”)
■ This should output text to

the console
● Wonderful -- congratulations

on your first script!

22

Your First Script (2/2)

● We’ll talk a little bit about some
of these important Builtin
Modules throughout this talk.

○ Inside Blender, the python console,
automatically loads these for us

○ Later on, in our scripts, we will
manually import these modules.

● The other thing to note is that we
are using Python 3.10.13

○ Your version may differ, but you’ll
want a relatively recent version of
Python

■ i.e. Python 3.10.XX or greater
is ideal moving forward

23

(Aside) Python Cheat Sheet

● I’ll assume you have some
amount of Python

○ Here’s a brief cheat sheet on
the right

● If you’re pretty comfortable
with:

○ lists, dictionaries, iteration,
and classes you’re all ready!

24

https://perso.limsi.fr/pointal/_media/python:cours:mementopython3-english.pdf

https://perso.limsi.fr/pointal/_media/python:cours:mementopython3-english.pdf

The Power of Python at Your Fingertips! (1/2)

● At this point -- you have all of
Python available!

○ The example to the right shows
importing ‘sys’ and ‘random’
libraries.

○ The ‘sys.version’ tells us what
version of Python we have (incase
you missed it)

■ Generally speaking, we want
Python version 3+ for this
tutorial.

○ For printing the random numbers, try
repeating the command a few times

25

The Power of Python at Your Fingertips! (2/2)

● (Still capture of the code)

26

(Aside) Console Productivity Tip(s)

● To save yourself time, and re-execute
a command, press the ‘up’ and ‘down’
arrow keys to cycle between your
command history

○ Pressing ‘enter’ again will execute the
command again (try with the random
numbers)

● Use ‘tab’ to autocomplete text that you
start typing.

○ This is a big time saver for typing out
functions, variable names, etc.

■ As a learner, this is also useful for
exploring which commands are
available.

27

Another Script -- Script for Timing

● Again, demonstrating usage of
Python

○ It’s nice feedback to the user
○ I’ve found if you have a timer for

when the operation starts ,and
some sort of reporting when the
operation is finished

■ From a development
standpoint -- it’s useful for
performance, and otherwise
knowing when your
operation is done as well

○ But -- it’s not just Python that we
have access to

28

Text for copy & pasting
import time
start_timer = time.time()
print(“elapsed”,time.time() - start_timer)

The Power of Blender at Your Fingertips! (1/2)

● What’s also very neat about Blender3D is
learning some of the commands ‘as you
normally use blender’

○ Take a moment to modify the geometry of the cube
○ As you modify the geometry, you’ll observe the

info log is updated!
● Wow -- observe that we can see the script

actions as they take place!

29

The Power of Blender at Your Fingertips! (2/2)

● Exercise: Try copying and pasting the
previous ‘extrude’ command from the
info log, into the python console which
repeats the extrude of the selected face.

30

Getting Help on Your Journey (1/2)

● help(...)
○ From the Python Console you can type

‘help’ on any module, function, class, or
even a variable.

○ Exercise: Try help(bpy), help(bpy.data)
■ (Remember, these modules have

been imported for us already)
■ You can use ‘help’ on any module to

start exploring some of the ‘classes’
and ‘functions’ available.

● type(...)
○ This is useful for querying the type of

something that has already been created.

31

Getting Help on Your Journey (2/2)

● The Python API
Documentation online is a
great resource

○ Note: I recommend downloading
a copy to be used offline for faster
browsing

■ (Also useful for long
airplane rides :))

32

https://docs.blender.org/api/current/index.html

https://docs.blender.org/api/current/index.html

Enabling ‘Python Tooltips’ for Developers

● Another very useful way to
explore the Python API is to
enable ‘Python Tooltips’

○ This is done in the ‘preferences’
modal.

○ Enabling ‘Python Tooltips’ will show
you additional information about
various tools you are use to clicking
on -- and guide you to the python
API.

■ (See example in the top-right)

33

Using the Internal Text Editor

34

Blender 3D Internal Text Editor

35

● At some point we likely will
want to be able to create
larger scripts that execute a
series of commands to
perform some work.

○ For this presentation we’ll write
our scripts in the Text Editor

○ Note: You can use your favorite
Text Editor (VIM, VSCode, etc.)
to also write your scripts.

Add our scripts here
so we can load files which
contain a series of commands

Tip: Launch Blender from Terminal

36

● In order to help us debug and ‘print’ out text, it is
most useful to launch Blender from the terminal.

○ Then when we execute our scripts we will get text output on
the terminal where we launched.

○ On Mac
■ You will then use ‘Option + P’ to run your script

○ On Linux
■ You will use ‘alt+p’

Solving the Bounding Box Problem with
Python Scripting

Gathering our Tools from the Python API

37

Creating a Bounding Box Programmatically

38

● So as was shown at the start
of the talk, let’s begin our
journey creating a bounding
box

○ Now this is something that
Blender3D already has the
capability to do

○ However, learning how to do so
from scratch will expose us to
Blender’s API through Python.

Creating a Bounding Box Programmatically -- built-in

39

● Now of course you could call:
○ .show.bounds = True
○ That’s not really in the spirit of this

assignment...
● However, this does introduce

the ‘bpy.context’ (see the
bottom-left of info log) module
which is of use

Exercise: How do you compute the bounding box? (1/2)

40

● Now if you had to compute the bounding box
from scratch -- how would you do it?

○ (If you’re watching this in the future you can pause
the video and write out a solution)

○ For my current audience, I’m going to forward us to
one solution -- there’s a couple ways to approach this

Exercise: How do you compute the bounding box? (2/2)

41

● Simplest solution
○ Iterate through all of the vertices

■ Keep track of both the minimum and maximum
x,y,z values

● Another solution for obtaining the bounds is to
otherwise use:

○ myObject.bound_box
○ This returns the ‘8’ vertices of the bounding box

● (Aside: This is an axis-aligned bounding box,
but we can apply a transform to get an
oriented-bounding box)

A few Blender Python (bpy) modules of Importance (1/2)

42

● bpy
○ This is the main module of the programming interface in Blender.

● bpy.context
○ This module captures the current state of the user interaction

■ (e.g. selection or current mode)
○ Note: This is often aliased as ‘C’ for ‘bpy.context’

● bpy.data
○ This is the storage of blender objects

■ Anything found within bpy.data.objects is something that
can be displayed in the Blender 3D viewport

● (e.g. camera, lights, curves, meshes, etc.)
○ Note: This is often aliased to ‘D’ for ‘bpy.data’

● bpy.ops
○ Functions that can be invoked in the interface

A few Blender Python (bpy) modules of (2/2)

43

● bpy
○ This is the main module of the programming interface in Blender.

● bpy.context
○ This module captures the current state of the user interaction

■ (e.g. selection or current mode)
○ Note: This is often aliased as ‘C’ for ‘bpy.context’

● bpy.data
○ This is the storage of blender objects

■ Anything found within bpy.data.objects is something that
can be displayed in the Blender 3D viewport

● (e.g. camera, lights, curves, meshes, etc.)
○ Note: This is often aliased to ‘D’ for ‘bpy.data’

● bpy.ops
○ Functions that can be invoked in the interface

● Both of these modules are going
to be important for us to work in
○ One for selecting our object of

interest
○ The second for getting data

Bounding Box
Implementation

44

bpy.context and selecting the current object

● So again the bpy.context is
useful for telling us what is going on
in an ‘area’ of our screen.

● Usually these are ‘read-only’ types
of things we can get

○ But it’s very useful for instance if we
want to store a variable to our currently
selected object

● e.g.
○ myObject = bpy.context.active_object

45

Demonstrates getting a handle to the active object

Acquiring the Geometry of our current object

● As we know, 3D objects are often
defined by:

○ vertices, edges, and polygons (3 or
more edges)

● # Now let's acquire some data
○ verts = myObject.data.vertices
○ edges = myObject.data.edges
○ faces = myObject.data.polygons

● Note: When we access an objects
‘data’, sometimes you’ll hear this
referred to as a data-block

46

Demonstrates getting vertex, edge, and polygon
information

Computing the Bounds (1/3)

● I’ve opted for as simple of
an algorithm as possible

47

Computing the Bounds (2/3)

● First grab the vertices
○ We’re going to want our own

‘List’ of vertices to work with
(and later generate some
geometry)

○ Note: I have commented out
to only compute bounding
box on selected vertices (line
87) -- try to play around with
that on your own time ;)

■ Hint: May or may not
need to be in edit
mode.

48

Computing the Bounds (3/3)

● Finally, compute the
bounds

○ The min and max functions
are useful here for searching
through a range

49

Creating a ‘Bounding Box’ (1/2)

● Now that we have the boundaries, we need to create a ‘box’ object
● In order to generate a ‘mesh’ we have a few choices

○ Some folks with graphics programming, may go ahead and want to create the ‘indexed cube’
and calculate the vertices, edges, and polygons (with the correct winding order)

50
https://alg.manifoldapp.org/api/proxy/ingestion_sources/85b8a903-6d37-4a26-b376-552ce0ef528b

https://alg.manifoldapp.org/api/proxy/ingestion_sources/85b8a903-6d37-4a26-b376-552ce0ef528b

Creating a ‘Bounding Box’ (2/2)

● Now that we have the boundaries, we need to create a ‘box’ object
● In order to generate a ‘mesh’ we have a few choices

○ Some folks with graphics programming, may go ahead and want to create the ‘indexed cube’
and calculate the vertices, edges, and polygons (with the correct winding order)

○ A second choice, is to simply generate a cube from blender, and reposition the corner vertices
■ This does the hard work of preserving the connectivity for us.

51

bmesh
Blender Mesh Format

52

BMesh (bmesh)

53

● The BMesh API allows us to work with the
internal mesh editing tools in blender.

○ i.e. Basically any operations that you’d like
● Probably most important for us is to just be

able to grab data and put it into a mesh.
● There might come a time where you want to

perform more interesting operations
○ (Note: When you run a script, you lock the mesh by

operating on it, modify the mesh, and returns control
to a user)

https://docs.blender.org/api/current/bmesh.html#module-bmesh

https://docs.blender.org/api/current/bmesh.html#module-bmesh

Iterating through data

● It’s useful for us to store the vertices, edges,
and faces in our own data structure to
generate ‘a new mesh’ for our bounding box

○ The code below demonstrates how to ‘iterate’
through each of vertices, edges, and ‘polygons’ (i.e.
faces)

■ Please be careful as to not modify the original
data -- observe we are copying into our own
list

■ Modifying a data structure while iterating could
be unsafe

● (‘search iterator invalidation’)
● Note: These blocks of code could be

condensed further -- optimize at your level of
Python!

○ List comprehension, unzip list, etc. 54

Building Our Bounding Box

● Here is the little hack where I
just need to reassign the
vertices of our ‘cube’

○ There’s a pattern here you can
follow

■ (Hint: It happens look like
a truth table if you have
taken a logic or discrete
math subject)

55

Building Our Mesh

● Finally it’s time to create our mesh
○ We’ll give it a unique name
○ Populate the mesh from our collection of

vertices
■ Importantly using the

bounding_verts
■ The edge and face relationship

remains the same as a standard
cube

● At line 164 and 166, observe that we
need to do two steps

○ One to create the object
○ A second step to add it to our scene

(‘Collection’ being the default scene)
● And finally, as an added touch at line

169 -- set the display_type to ‘WIRE’
○ (Which I learned by clicking around the

user interface) 56

One Final Step

● In order to orient our bounding
box to the object, we again
have two strategies:

○ Set the transform (scale, rotation,
and location) equivalent to the
object

○ or
○ Make the bounding object a child

of the selected object
■ Thus inheriting the

transformations
● Either is fine -- the point is to

play around and be creative
○ (Though making the child may be

easier to maintain and organize in
your scene!)

57

The Final Result!

58

● Creating a Bounding Box programmatically in Python

Your Script as an Add-On

59

Making our Script available as a Plugin to the World

60

● Running our script through the
Text Editor is perfectly fine

○ However -- it becomes much easier to
share and use if we create an ‘add-on’

○ Some add-ons are official, and others
are from the community (like you) that
we can choose from.

Step 1: Prep

61

● The first thing we need is to prep
our script as an add-on

○ The bl_info dictionary populates our
plugin with meta-data importantly with:

■ A name
■ Category

○ register() and unregister() are
function calls that take place when we
first add our plugin

https://docs.blender.org/manual/en/latest/advanced/scripting/addon_tutorial.html

https://docs.blender.org/manual/en/latest/advanced/scripting/addon_tutorial.html

Step 2: Make our command useable

62

● We can make things slightly more interesting by adding our command to
the search (F3) command menu.

https://docs.blender.org/manual/en/latest/advanced/scripting/addon_tutorial.html

https://docs.blender.org/manual/en/latest/advanced/scripting/addon_tutorial.html

Step 3: Prepare ‘execute’ function

63

● Wrap the work that we previously
did into a class

○ This inherits from the ‘Operator’ type, in
that we then use our function as an
‘operator’

○ Then... (next slide)

https://docs.blender.org/manual/en/latest/advanced/scripting/addon_tutorial.html

https://docs.blender.org/manual/en/latest/advanced/scripting/addon_tutorial.html

Step 4: Try it out!

64

● Test it out -- and we’re done!
○ Of course -- for another tutorial we can

create a menubar icon and further
continue our adventure...maybe next
year?

https://docs.blender.org/manual/en/latest/advanced/scripting/addon_tutorial.html

https://docs.blender.org/manual/en/latest/advanced/scripting/addon_tutorial.html

Wrapping Up

65

Summary

66

● Today we took an introductory look
at Blender 3D’s Python API

○ We briefly looked at some of the main
modules

○ We solved (or resolved) a non-trivial
problem in creating a bounding box

■ We showed how to create an
add-on from this script.

Homework: New Feature Ideas of our Script

● What happens if we add new geometry to our mesh?
○ We need a way to poll and recompute the bounding box
○ Investigate handler callbacks here: https://docs.blender.org/api/current/bpy.app.handlers.html

● How about adding an option to creating a bounding sphere?
○ Just need to compute the maximum of the bounds on each axis to use as a diameter.

● Abstraction
○ As an exercise -- think about which chunks of code could go into their own functions
○ Perhaps we could encapsulate this into a classes or files

■ As our scripts get larger, it’s important to get a little bit organized.
● Resiliency

○ Add some try/except blocks where necessary to make the code a bit more resilient

67

https://docs.blender.org/api/current/bpy.app.handlers.html

Other Essential Skills - Version Control for Text-based Files

● If you’re diving into more
programming, version control of
your scripts becomes important

○ I’d recommend using ‘git’ and ‘github’ (to
host the git repository) as a general skill

■ Git Beginner Masterclass (Free)
○ If folks are already using a tool like

‘perforce’ to manage art assets, that will
also work fine too.

68

https://www.youtube.com/watch?v=HlYJpuwaXiE

Further resources and training materials

69

● Best Practices
○ https://docs.blender.org/api/current/info_best_practice.html
○ Goto resource for questions on code structure, performance recommendations, etc.

https://docs.blender.org/api/current/info_best_practice.html

Random Useful Ideas (If Time) (1/2)

● Check the blender version release
○ # Might be useful for checking compatibility with some feature
○ import bpy
○ bpy.app.version

■ or
○ major,minor,micro = bpy.app.version
○ print(major)

70

Random Useful Ideas (If Time) (2/2)
Import our main module

import bpy

A custom handler that runs only for the ‘Cube’

def my_handler(scene):

 if bpy.context.active_object.name == "Cube":

 print("Cube changed", scene.frame_current)

‘Install’ the handler (i.e. function) that will

run when we do something interesting.

bpy.app.handlers.depsgraph_update_post.append(my_handler)

71

Getting Started with
Scripting in Python

16:00 - 16:50 Fri, October 27, 2023

50 minutes | Introductory Audience

72

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io
YouTube:
www.youtube.com/c/MikeShah

Thank you Blender Con 2023!

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

Thank you!

73

Extra

74

